
Package: cnaOpt (via r-universe)
September 1, 2024

Title Optimizing Consistency and Coverage in Configurational Causal
Modeling

Version 0.5.2

Date 2022-07-06

Description This is an add-on to the 'cna' package
<https://CRAN.R-project.org/package=cna> comprising various
functions for optimizing consistency and coverage scores of
models of configurational comparative methods as Coincidence
Analysis (CNA) and Qualitative Comparative Analysis (QCA). The
function conCovOpt() calculates con-cov optima, selectMax()
selects con-cov maxima among the con-cov optima, DNFbuild() can
be used to build models actually reaching those optima, and
findOutcomes() identifies those factor values in analyzed data
that can be modeled as outcomes. For a theoretical introduction
to these functions see Baumgartner and Ambuehl (2021)
<doi:10.1177/0049124121995554>.

Depends R (>= 3.5.0), cna (>= 3.2.0)

Imports Rcpp (>= 1.0.7), matrixStats, ggplot2, dplyr, stats, utils

LinkingTo Rcpp

License GPL (>= 2)

Encoding UTF-8

NeedsCompilation yes

Author Mathias Ambuehl [aut, cre, cph], Michael Baumgartner [aut, cph]

Maintainer Mathias Ambuehl <mathias.ambuehl@consultag.ch>

Date/Publication 2022-07-08 14:00:11 UTC

Repository https://mathiasambuehl.r-universe.dev

RemoteUrl https://github.com/cran/cnaOpt

RemoteRef HEAD

RemoteSha c6e0b904714713f05f6e3d0989ff841d0646f661

1

https://CRAN.R-project.org/package=cna
https://doi.org/10.1177/0049124121995554

2 cnaOpt

Contents
cnaOpt . 2
conCovOpt . 5
conCovOpt_utils . 7
ereduce . 9
findOutcomes . 11
selectMax . 13

Index 15

cnaOpt Find atomic solution formulas with optimal consistency and coverage

Description

cnaOpt attempts to find atomic solution formulas (asfs) for a given outcome (inferred from crisp-
set, "cs", or multi-value, "mv", data) that are optimal with respect to the model fit parameters
consistency and coverage (cf. Baumgartner and Ambuehl 2021).

Usage

cnaOpt(x, outcome, ..., reduce = c("ereduce", "rreduce", "none"),
niter = 1, crit = quote(con * cov), cond = quote(TRUE),

approx = FALSE, maxCombs = 1e7)

Arguments

x A data.frame or configTable of type "cs" or "mv".

outcome A character string specifying one outcome, i.e. one factor value in x.

... Additional arguments passed to configTable, for instance rm.dup.factors,
rm.dup.factors, or case.cutoff.

reduce A character string: if "ereduce" or "rreduce", the canonical DNF realizing the
con-cov optimum is freed of redundancies using ereduce or rreduce (possibly
repeatedly, see niter), respectively; if "none", the unreduced canonical DNF
is returned. reduce = TRUE is interpreted as "rreduce", reduce = FALSE and
reduce = NULL as "none".

niter An integer value indicating the number of repetitive applications of rreduce.
niter will be ignored (with a warning) if reduce is not equal to "rreduce".
Note that repeated applications may yield identical solutions and that duplicate
solutions are eliminiated, so that the number of resulting solutions can be smaller
than niter.

crit Quoted expression specifying a numeric criterion to be maximized when select-
ing the best solutions among the ones that meet criterion cond, for example,
quote(min(con,cov)) or quote(0.8*con + 0.2*cov), etc.

cnaOpt 3

cond Quoted expression specifying a logical criterion to be imposed on the solutions
inferred from x before selecting the best solutions on the basis of crit, for
example, quote(con > 0.85) or quote(con > cov), etc.

approx As in conCovOpt.

maxCombs Maximal number of combinations that will be tested for optimality. If the num-
ber of necessary iterations exceeds maxCombs, cnaOpt will stop executing and
return an error message stating the necessary number of iterations. Early termi-
nation can then be avoided by increasing maxCombs accordingly. This argument
is passed to conCovOpt and ereduce.

Details

cnaOpt implements a procedure introduced in Baumgartner and Ambuehl (2021). It infers causal
models (atomic solution formulas, asf) for the outcome from data x that comply with the logical
condition cond and maximize the numeric criterion crit. Data x may be crisp-set ("cs") or multi-
value ("mv"), but not fuzzy-set ("fs"). The function proceeds as follows:

1. it calculates consistency and coverage optima (con-cov optima) for x;

2. it selects the optima that meet cond;

3. among those optima, it selects those that maximize crit;

4. it builds the canonical disjunctive normal forms (DNF) of the selected optima

5. it generates all minimal forms of those canonical DNFs

Roughly speaking, running cnaOpt amounts to sequentially executing configTable, conCovOpt,
selectMax, DNFbuild and condTbl.

In the default setting, cnaOpt attempts to build all optimal solutions using ereduce. But that may
be too computationally demanding because the space of optimal solutions can be very large. If
the argument reduce is set to "rreduce", cnaOpt builds one arbitrarily selected optimal solution,
which typically terminates quickly. By giving the argument niter a non-default value, say, 20, the
process of selecting one optimal solution under reduce = "rreduce" is repeated 20 times. As the
same solutions will be generated on some iterations and duplicates are not returned, the output may
contain less models than the value given to niter. If reduce is not set to "rreduce", niter is
ignored with a warning.

Value

cnaOpt returns a data.frame with additional classes "cnaOpt" and "condTbl". See the "Value"
section in ?condTbl for details.

References

Baumgartner, Michael and Mathias Ambuehl. 2021. “Optimizing Consistency and Coverage in
Configurational Causal Modeling.” Sociological Methods & Research.
doi:10.1177/0049124121995554.

See Also

cna, conCovOpt

4 cnaOpt

Examples

Example 1: Real-life crisp-set data, d.educate.
(res_opt1 <- cnaOpt(d.educate, "E"))

Using the pipe operator (%>%), the steps processed by cnaOpt in the
call above can be reproduced as follows:
library(dplyr)
conCovOpt(d.educate, "E") %>% selectMax %>% DNFbuild(reduce = "ereduce") %>%

paste("<-> E") %>% condTbl(d.educate)

Example 2: Simulated crisp-set data.
dat1 <- data.frame(

A = c(1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0),
B = c(0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0),
C = c(0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0),
D = c(1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1),
E = c(1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1),
F = c(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)

)

(res_opt2 <- cnaOpt(dat1, "E"))

Change the maximality criterion.
cnaOpt(dat1, "E", crit = quote(min(con, cov)))
Change the selection condition.
cnaOpt(dat1, "E", cond = quote(con >= 0.9))
Build all con-cov optima with coverage above 0.9 that maximize min(con, cov).
cnaOpt(dat1, "E", crit = quote(min(con, cov)), cond = quote(cov > 0.9))
Different values of the reduce argument.
cnaOpt(dat1, "E", reduce = "none") # canonical DNF
cnaOpt(dat1, "E", reduce = "rreduce") # one randomly drawn optimal solution
Iterate random solution generation 10 times.
cnaOpt(dat1, "E", reduce = "rreduce", niter = 10)

Example 3: All logically possible configurations.
(res_opt3 <- cnaOpt(full.ct(4), "D")) # All combinations are equally bad.

Example 4: Real-life multi-value data, d.pban.
cnaOpt(d.pban, outcome = "PB=1")
cnaOpt(d.pban, outcome = "PB=1", crit = quote(0.8*con + 0.2*cov))
cnaOpt(d.pban, outcome = "PB=1", cond = quote(con > 0.9))
cnaOpt(d.pban, outcome = "PB=0")
cnaOpt(d.pban, outcome = "PB=0", cond = quote(con > 0.9))
cnaOpt(d.pban, outcome = "F=2")
cnaOpt(d.pban, outcome = "F=2", crit = quote(0.8*con + 0.2*cov))

Example 5: High computational demand.
dat2 <- configTable(d.performance[,1:8], frequency = d.performance$frequency)
try(cnaOpt(dat2, outcome = "SP")) # error because too computationally demanding
The following call does not terminate because of reduce = "ereduce".
try(cnaOpt(dat2, outcome = "SP", approx = TRUE))
We could increase maxCombs, as in the line below

conCovOpt 5

Not run: cnaOpt(dat2, outcome = "SP", approx = TRUE, maxCombs = 1.08e+09)
but this takes very long to terminate.
Alternative approach: Produce one (randomly selected) optimal solution using reduce = "rreduce".
cnaOpt(dat2, outcome = "SP", approx = TRUE, reduce = "rreduce")
Iterate the previous call 10 times.
cnaOpt(dat2, outcome = "SP", approx = TRUE, reduce = "rreduce", niter = 10)
Another alternative: Use ereduce for minimization but introduce a case.cutoff.
cnaOpt(dat2, outcome = "SP", case.cutoff = 10)

conCovOpt Find consistency and coverage optima for configurational data

Description

conCovOpt issues pairs of optimal consistency and coverage scores that atomic solution formulas
(asf) of an outcome inferred from configurational data can possibly reach (cf. Baumgartner and
Ambuehl 2021).

Usage

conCovOpt(x, outcome = NULL, ..., rm.dup.factors = FALSE, rm.const.factors = FALSE,
maxCombs = 1e+07, approx = FALSE, allConCov)

S3 method for class 'conCovOpt'
print(x, ...)
S3 method for class 'conCovOpt'
plot(x, con = 1, cov = 1, ...)

Arguments

x In conCovOpt: a data.frame or configTable. In the print- and plot-method:
an output of conCovOpt.

outcome A character vector of one or several factor values in x.

... In conCovOpt: arguments passed to configTable, e.g. case.cutoff. The
‘...’ are currently not used in plot.conCovOpt.

rm.dup.factors Logical; defaults to FALSE (which is different from configTable). If TRUE, all
but the first of a set of factors with identical values in x are removed.

rm.const.factors

Logical; defaults to FALSE (which is different from configTable). If TRUE,
factors with constant values in x are removed.

maxCombs Maximal number of combinations that will be tested for optimality. If the num-
ber of necessary iterations exceeds maxCombs, conCovOpt will stop executing
and return an error message stating the necessary number of iterations. Early
termination can then be avoided by increasing maxCombs accordingly.

approx Logical; if TRUE, an exhaustive search is only approximated; if FALSE, an
exhaustive search is conducted.

allConCov Defunct argument (as of package version 0.5.0). See the remark in ?multipleMax.

6 conCovOpt

con, cov Numeric scalars between 0 and 1 indicating consistency and coverage thresholds
marking the area of "good" models in a square drawn in the plot. Points within
the square correspond to models reaching these thresholds.

Details

conCovOpt implements a procedure introduced in Baumgartner and Ambuehl (2021). It calculates
consistency and coverage optima for models (i.e. atomic solution formulas, asf) of an outcome
inferred from data x prior to actual CNA or QCA analyses.

An ordered pair (con, cov) of consistency and coverage scores is a con-cov optimum for outcome
Y=k in data x iff it is not excluded (based e.g. on the data structure) for an asf of Y=k inferred from
x to reach (con, cov) but excluded to score better on one element of the pair and at least as well on
the other.

conCovOpt calculates con-cov optima by executing the following steps:

1. if x is a data frame, aggregate x in a configTable,
2. build exo-groups with constant values in all factors other than the outcome,
3. assign output values to each exo-group that reproduce the behavior of outcome as closely as

possible,
4. calculate con-cov scores for each assignment resulting in step 3,
5. eliminate all non-optimal scores.

The implementation of step 4 calculates con-cov scores of about 10 million output value assign-
ments in reasonable time, but step 3 may result in considerably more assignments. In such cases,
the argument approx may be set to its non-default value "TRUE", which determines that step 4 is
only executed for those assignments closest to the outcome’s median value. This is an efficient
approach for finding many, but possibly not all, con-cov optima.

In case of crisp-set and multi-value data, at least one actual model (asf) inferrable from x and
reaching an optimum’s consistency and coverage scores is guaranteed to exist for every con-cov
optimum. The function DNFbuild can be used to build these optimal models. The same does not
hold for fuzzy-set data. In fuzzy-set data it merely holds that the existence of a model reaching
an optimum’s consistency and coverage scores cannot be excluded prior to an actual application of
cna.

Value

An object of class ’conCovOpt’. The exo-groups resulting from step 2 are stored as attribute
"exoGroups", the lists of output values resulting from step 3 are stored as attribute "reprodList"
(reproduction list).

References

Baumgartner, Michael and Mathias Ambuehl. 2021. “Optimizing Consistency and Coverage in
Configurational Causal Modeling.” Sociological Methods & Research.
doi:10.1177/0049124121995554.

See Also

configTable, selectMax, DNFbuild

conCovOpt_utils 7

Examples

(cco.irrigate <- conCovOpt(d.irrigate))
conCovOpt(d.irrigate, outcome = c("R","W"))
Plot method.
plot(cco.irrigate)
plot(cco.irrigate, con = .8, cov = .8)

dat1 <- d.autonomy[15:30, c("EM","SP","CO","AU")]
(cco1 <- conCovOpt(dat1, outcome = "AU"))

print(cco1, digits = 3, row.names = TRUE)
plot(cco1)

Exo-groups (configurations with constant values in all factors other than the outcome).
attr(cco1$A, "exoGroups")

Rep-list (list of values optimally reproducing the outcome).
attr(cco1$A, "reprodList")

dat2 <- d.pacts
Maximal number of combinations exceeds maxCombs.
(cco2 <- conCovOpt(dat2, outcome = "PACT")) # Generates a warning
Increase maxCombs.
(cco2_full <- try(conCovOpt(dat2, outcome = "PACT",

maxCombs=1e+08))) # Takes a long time to terminate
Approximate an exhaustive search.
(cco2_approx1 <- conCovOpt(dat2, outcome = "PACT", approx = TRUE))
selectMax(cco2_approx1)
The search space can also be reduced by means of a case cutoff.
(cco2_approx2 <- conCovOpt(dat2, outcome = "PACT", case.cutoff=2))
selectMax(cco2_approx2)

conCovOpt_utils Build disjunctive normal forms realizing con-cov optima

Description

reprodAssign generates the output values of disjunctive normal forms (DNFs) reaching con-cov
optima. DNFbuild builds a DNF realizing a targeted con-cov optimum; it only works for crisp-set
and multi-value data (cf. Baumgartner and Ambuehl 2021).

Usage

reprodAssign(x, outcome = names(x), id = xi$id)
DNFbuild(x, outcome = names(x), reduce = c("ereduce", "rreduce", "none"),

id = xi$id, maxCombs = 1e7)

8 conCovOpt_utils

Arguments

x An object produced by selectMax.

outcome A character string specifying one outcome value in attr(x, "configTable").

id An integer vector referring to the identifier of the targeted con-cov optimum or
optima.

reduce A character string: if "ereduce" or "rreduce", the canonical DNF realizing
the con-cov optimum is freed of redundancies using ereduce or rreduce, re-
spectively; if "none", the unreduced canonical DNF is returned. reduce=TRUE
is interpreted as "rreduce", reduce=FALSE and reduce=NULL as "none".

maxCombs Passed to ereduce if reduce = "ereduce"; ignored otherwise. (See ereduce
for details.)

Details

An atomic CNA model (asf) accounts for the behavior of the outcome in terms of a redundancy-free
DNF. reprodAssign generates the output values such a DNF has to return in order to reach a con-
cov optimum stored in an object of class ’selectMax’. If the data stored in attr(x, "configTable")
are crisp-set or multi-value, DNFbuild builds the DNFs realizing the targeted con-cov optimum.
(For fuzzy-set data an error is returned.) If reduce = "ereduce" (default), all redundancy-free
DNFs are built using ereduce; if reduce = "rreduce" (more computationally efficient), one (ran-
domly selected) redundancy-free DNF is built using rreduce; if reduce = "none", the non-reduced
canonical DNF is returned. The argument id allows for selecting a targeted con-cov optimum via
its identifier (see examples below).

Value

reprodAssign: A matrix of scores. DNFbuild: A Boolean formula in disjunctive normal form
(DNF).

References

Baumgartner, Michael and Mathias Ambuehl. 2021. “Optimizing Consistency and Coverage in
Configurational Causal Modeling.” Sociological Methods & Research.
doi:10.1177/0049124121995554.

See Also

conCovOpt, selectMax, condTbl

Examples

CS data, d.educate
cco1 <- conCovOpt(d.educate)
best1 <- selectMax(cco1)
reprodAssign(best1, outcome = "E")
DNFbuild(best1, outcome = "E")
DNFbuild(best1, outcome = "E", reduce = FALSE) # canonical DNF
DNFbuild(best1, outcome = "E", reduce = "ereduce") # all redundancy-free DNFs

ereduce 9

DNFbuild(best1, outcome = "E", reduce = "rreduce") # one redundancy-free DNF
DNFbuild(best1, outcome = "E", reduce = "none") # canonical DNF

Simulated mv data
datMV <- data.frame(
A = c(3,2,1,1,2,3,2,2,2,1,1,2,3,2,2,2,1,2,3,3,3,1,1,1,3,1,2,1,2,3,3,2,2,2,1,2,2,3,2,1,2,1,3,3),
B = c(1,2,3,2,1,1,2,1,2,2,3,1,1,1,2,3,1,3,3,3,1,1,3,2,2,1,1,3,3,2,3,1,2,1,2,2,1,1,2,2,3,3,3,3),
C = c(1,3,3,3,1,1,1,2,2,3,3,1,1,2,2,2,3,1,1,2,1,2,2,3,3,1,2,2,2,3,2,1,1,2,2,2,1,1,1,2,2,1,1,2),
D = c(3,1,2,2,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,1,1,1,1,1,2,2,2,2,2,3,1,1,1,1,1,2,2,2,2,2,3,3,3),
E = c(3,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3)

)

Apply conCovOpt and selectMax.
(cco2 <- conCovOpt(datMV))
(best2 <- selectMax(cco2))

Apply DNFbuild to build the redundancy-free DNFs reaching best2.
(formula1 <- DNFbuild(best2, outcome = "D=3"))
Both DNFs in formula1 reache the con-cov score stored in best2 for outcome "D=3".
condTbl(paste0(formula1, "<-> D=3"), datMV)
Build only one redundancy-free DNF reaching best2.
DNFbuild(best2, outcome = "D=3", reduce = "rreduce")
Any factor value in datMV can be treated as outcome.
(formula2 <- DNFbuild(best2, outcome = "E=3", reduce = "rreduce"))
condTbl(paste0(formula2, "<-> E=3"), datMV)
Any con-cov optimum in cco2 can be targeted via its identifier.
(formula3 <- DNFbuild(best2, outcome = "E=3", id = 508))
condTbl(paste0(formula3, "<-> E=3"), datMV)

Simulated fs data
datFS <- data.frame(

A = c(.73, .85, .94, .36, .73, .79, .39, .82, .15, .12, .67, .27, .3),
B = c(.21, .03, .91, .64, .39, .12, .06, .7, .73, .15, .88, .73, .36),
C = c(.61, 0, .61, 1, .94, .15, .88, .27, .12, .12, .27, .15, .15),
D = c(.64, .67, .3, .06, .33, .03, .76, .94, .67, .76, .18, .27, .36),
E = c(.91, .94, .67, .85, .73, .79, .24, .09, .03, .21, .33, .36, .27)

)

Apply conCovOpt and selectMax.
(cco3 <- conCovOpt(datFS, outcome = "E"))
(best3 <- selectMax(cco3))

Apply reprodAssign.
reprodAssign(best3, outcome = "E")
Select a con-cov optimum in cco3 via its identifier.
reprodAssign(best3, outcome = "E", id = 252)

DNFbuild does not work for fs data; it generates an error.
try(DNFbuild(best3, outcome = "E"))

ereduce Find all minimal disjunctive normal forms (DNF) of an input DNF

10 ereduce

Description

ereduce builds all minimal disjunctive normal forms corresponding to an input DNF. It is similar
to rreduce, which, however, only builds one minimal DNF at random.

Usage

ereduce(cond, x = full.ct(cond), full = !missing(x),
simplify2constant = TRUE, maxCombs = 1e7)

Arguments

cond A character string specifying a disjunctive normal form (DNF); can be either
crisp-set or multi-value.

x A configTable or data.frame; can be either crisp-set or multi-value.

full Logical; if TRUE, redundancies are eliminated relative to full.ct(x), otherwise
relative to x.

simplify2constant

Logical; if TRUE (the default), a tautologous or contradictory cond is reduced to
a constant "1" or "0", respectively. If FALSE, a minimal tautology or contradic-
tion, i.e. "A+a" or "A*a", will result.

maxCombs Maximal number of iterations that will be ran in the most time-consuming step.
If the number of necessary iterations exceeds maxCombs, ereduce will stop ex-
ecuting and return an error message stating the necessary number of iterations.
Early termination can then be avoided by increasing maxCombs accordingly.

Details

ereduce eliminates conjuncts and disjuncts from a DNF cond as long as the result of condition(cond,
x) remains the same. The only required argument is cond. If x is not provided, redundancies are
eliminated relative to full.ct(cond).

ereduce generates all redundancy-free forms of cond, while rreduce only returns one randomly
chosen one. rreduce is faster than ereduce, but often incomplete. In a nutshell, ereduce searches
for minimal hitting sets in cond preventing cond from being false in data x.

Value

A vector of redundancy-free disjunctive normal forms (DNF).

See Also

rreduce, full.ct, conCovOpt, DNFbuild.

Examples

Logical redundancies.
cond1 <- "A*b + a*B + A*C + B*C"
ereduce(cond1)
rreduce(cond1) # repeated calls generate different outputs

findOutcomes 11

cond2 <- "A*b + a*B + A*B + a*b"
ereduce(cond2)
ereduce(cond2, simplify2constant = FALSE)

Redundancy elimination relative to simulated cs data.
dat1 <- data.frame(

A = c(0, 0, 0, 0, 1, 1, 0, 1),
B = c(0, 1, 0, 1, 1, 0, 0, 0),
C = c(1, 1, 0, 1, 1, 0, 1, 1),
D = c(0, 0, 0, 0, 0, 1, 1, 1))

cco1 <- conCovOpt(dat1, "D")
best1 <- selectMax(cco1)
(formula1 <- DNFbuild(best1, outcome = "D", reduce = FALSE))
ereduce
ereduce(formula1, dat1, full = FALSE)
rreduce
rreduce(formula1, dat1, full = FALSE)

Redundancy elimination relative to simulated mv data.
dat2 <- data.frame(
A = c(3,2,1,1,2,3,2,2,2,1,1,2,3,2,2,2,1,2,3,3,3,1,1,1,3,1,2,1,2,3,3,2,2,2,1,2,2,3,2,1,2,1,3,3),
B = c(1,2,3,2,1,1,2,1,2,2,3,1,1,1,2,3,1,3,3,3,1,1,3,2,2,1,1,3,3,2,3,1,2,1,2,2,1,1,2,2,3,3,3,3),
C = c(1,3,3,3,1,1,1,2,2,3,3,1,1,2,2,2,3,1,1,2,1,2,2,3,3,1,2,2,2,3,2,1,1,2,2,2,1,1,1,2,2,1,1,2),
D = c(3,1,2,2,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,1,1,1,1,1,2,2,2,2,2,3,1,1,1,1,1,2,2,2,2,2,3,3,3),
E = c(3,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3)

)
cco2 <- conCovOpt(dat2, "D=3")
best2 <- selectMax(cco2)
(formula2 <- DNFbuild(best2, outcome = "D=3", reduce = FALSE))
ereduce
ereduce(formula2, dat2, full = FALSE)
rreduce
rreduce(formula2, dat2, full = FALSE)

Any Boolean expressions.
cond <- "!(A*B*C)*!(a*b*c)" # or "A + B*!(D + e) <-> C"
x <- selectCases(cond)
(cond <- cna:::getCond(x)) # returns a DNF equivalent to cond, but with many redundancies
ereduce(cond)
rreduce(cond)

findOutcomes Identify the factors that can possibly be modeled as outcomes prior to
running CNA

Description

Prior to running CNA (or any other configurational comparative method), findOutcomes identi-
fies those factors in data x that can be modeled as outcomes relative to specified consistency and
coverage thresholds con and cov.

12 findOutcomes

Usage

findOutcomes(x, con = 1, cov = 1,
rm.dup.factors = FALSE, rm.const.factors = FALSE, ...)

Arguments

x A data.frame or configTable.

con, cov Numeric scalars between 0 and 1 specifying consistency and coverage thresh-
olds.

rm.dup.factors Logical; defaults to FALSE. If TRUE, all but the first of a set of factors with iden-
tical values in x are removed.

rm.const.factors

Logical; defaults to FALSE. If TRUE, factors with constant values in x are re-
moved.

... Additional arguments passed to conCovOpt and configTable, for instance approx
or case.cutoff.

Details

findOutcomes first runs conCovOpt to find the con-cov optima for all factors in x and then ap-
plies selectMax to select those factors with con-cov optima meeting the consistency and coverage
thresholds specified in con and cov.

In case of crisp-set and multi-value data, an actual model (asf) meeting the specified con and cov
thresholds is guaranteed to exist for every factor value with an entry TRUE in the outcome column.
The function DNFbuild can be used to build these models. The same does not hold for fuzzy-
set data. In case of fuzzy-set data, an entry TRUE in the outcome column simply means that the
existence of a model reaching the specified con and cov thresholds cannot be excluded prior to an
actual application of cna.

Value

A data.frame.

See Also

conCovOpt, selectMax, selectCases, DNFbuild, full.ct

Examples

Crisp-set data.
findOutcomes(d.educate)
findOutcomes(d.educate, con = 0.75, cov = 0.75)
x <- configTable(d.performance[,1:8], frequency = d.performance$frequency)
findOutcomes(x, con = .7, cov = .7) # too computationally demanding
Approximate by passing approx = TRUE to conCovOpt().
findOutcomes(x, con = .7, cov = .7, approx = TRUE)
Approximate by passing a case cutoff to configTable().
findOutcomes(x, con = .7, cov = .7, case.cutoff = 10)

selectMax 13

A causal chain.
target1 <- "(A + B <-> C)*(C + D <-> E)"
dat1 <- selectCases(target1)
findOutcomes(dat1)

A causal cycle.
target2 <- "(A + Y1 <-> B)*(B + Y2 <-> A)*(A + Y3 <-> C)"
dat2 <- selectCases(target2, full.ct(target2))
findOutcomes(dat2)

Multi-value data.
findOutcomes(d.pban) # no possible outcomes at con = cov = 1
findOutcomes(d.pban, con = 0.8)
findOutcomes(d.pban, con = 0.8, cov= 0.8)

Fuzzy-set data.
findOutcomes(d.jobsecurity) # no possible outcomes at con = cov = 1
findOutcomes(d.jobsecurity, con = 0.86)

selectMax Select the con-cov optima from a ’conCovOpt’ object that maximize a
specified optimality criterion

Description

selectMax selects the optima from a ’conCovOpt’ object that maximize a specified optimality
criterion (cf. Baumgartner and Ambuehl 2021).

Usage

selectMax(x, crit = quote(con * cov), cond = quote(TRUE), warn = TRUE)
multipleMax(x, outcome)

Arguments

x An object output by conCovOpt.

crit Quoted expression specifying a numeric criterion to be maximized when select-
ing from the con-cov optima that meet criterion cond, for example, min(con,cov)
or 0.8*con + 0.2*cov, etc.

cond Quoted expression specifying a logical criterion to be imposed on the con-cov
optima in x before selecting the optima maximizing crit, for example, con >
0.85 or con > cov, etc.

warn Logical; if TRUE, selectMax() returns a warning if no solution is found.

outcome A character string specifying a single outcome value in the original data.

14 selectMax

Details

While conCovOpt identifies all con-cov optima in an analyzed data set, selectMax selects those
optima from a ’conCovOpt’ object x that comply with a logical condition cond and fare best ac-
cording to the numeric optimality criterion crit. The default is to select so-called con-cov maxima,
meaning con-cov optima with highest product of consistency and coverage. But the argument crit
allows for specifying any other numeric optimality criterion, e.g. min(con, cov), max(con, cov),
or 0.8*con + 0.2*cov, etc. (see Baumgartner and Ambuehl 2021). If x contains multiple outcomes,
the selection of the best con-cov optima is done separately for each outcome.

As of package version 0.5.0, the function multipleMax is obsolete. It is kept for backwards com-
patibility only.

Via the column id in the output of selectMax it is possible to select one among many equally good
maxima, for instance, by means of reprodAssign (see the examples below).

Value

selectMax returns an object of class ’selectMax’.

References

Baumgartner, Michael and Mathias Ambuehl. 2021. “Optimizing Consistency and Coverage in
Configurational Causal Modeling.” Sociological Methods & Research.
doi:10.1177/0049124121995554.

See Also

conCovOpt, reprodAssign

See also examples in conCovOpt.

Examples

dat1 <- d.autonomy[15:30, c("EM","SP","CO","AU")]
(cco1 <- conCovOpt(dat1, outcome = "AU"))
selectMax(cco1)
selectMax(cco1, cond = quote(con > 0.95))
selectMax(cco1, cond = quote(cov > 0.98))
selectMax(cco1, crit = quote(min(con, cov)))
selectMax(cco1, crit = quote(max(con, cov)), cond = quote(cov > 0.9))

Multiple equally good maxima.
(cco2 <- conCovOpt(dat1, outcome = "AU"))
(sm2 <- selectMax(cco2, cond = quote(con > 0.93)))
Each maximum corresponds to a different rep-assignment, which can be selected
using the id argument.
reprodAssign(sm2, "AU", id = 10)
reprodAssign(sm2, "AU", id = 11)
reprodAssign(sm2, "AU", id = 13)

Index

cna, 3, 6, 12
cnaOpt, 2
conCovOpt, 3, 5, 8, 10, 12–14
conCovOpt_utils, 7
condTbl, 3, 8
configTable, 2, 3, 5, 6, 12

data.frame, 2, 3, 5, 12
DNFbuild, 3, 6, 10, 12
DNFbuild (conCovOpt_utils), 7

ereduce, 2, 3, 8, 9

findOutcomes, 11
full.ct, 10, 12

multipleMax, 5
multipleMax (selectMax), 13

plot.conCovOpt (conCovOpt), 5
print.conCovOpt (conCovOpt), 5

reprodAssign, 14
reprodAssign (conCovOpt_utils), 7
rreduce, 2, 8, 10

selectCases, 12
selectMax, 3, 6, 8, 12, 13

15

	cnaOpt
	conCovOpt
	conCovOpt_utils
	ereduce
	findOutcomes
	selectMax
	Index

